MS JUNIOR COLLEGE

Hyderabad

GUESS PAPER - 2 INTERMEDIATE 2nd YEAR MATHEMATICS- IIB

Time: 3hours

- i) Very Short Answer Type Questions.
 ii) Answer ALL questions.
 iii) Each question carriers TWO marks.
- 1. Show that A (3, -1) lies on the circle $x^2 + y^2 2x + 4y = 0$. Also find the other end of the diameter through A.
- 2. Find the value of k if the points (1, 3) and (2, k) are conjugate with respect to the circle $x^2 + y^2 = 35$.
- 3. Find the equation of radical axis of the two circles $2x^2 + 2y^2 + 3x + 6y 5 = 0$, $3x^2 + 3y^2 7x + 8y 11 = 0$.
- 4. Find the equation of normal to the parabola $y^2 = 6x$ at the positive end of the latusrectum.
- 5. Find the product of lengths of the perpendiculars from any point on the hyperbola $\frac{x^2}{16} \frac{y^2}{9} = 1$ to its asymptotes.
- 6. Evaluate $\int \frac{1}{\cosh x + \sinh x} \, dx$.
- 7. Evaluate $\int \frac{x^2}{\sqrt{1-x}} dx$.
- 8. Evaluate $\int_{0}^{\pi/2} \sec^{4} \Theta d\Theta$.
- 9. Find the area bounded between the curves $y^2 1 = 2x$ and x = 0.
- 10. Form the differential equation corresponding to the family of curves $y = c(x c)^2$. where c is a parameter.
- **II.** i) Short Answer Type Questions.

(5 x 4 = 20)

- ii) Answer any **FIVE** questions.
- iii) Each question carriers FOUR marks.
- 11. Show that x + y + 1 = 0 touches the circle $x^2 + y^2 3x + 7y + 14 = 0$ and find its point of contact.
- 12. Show that the circles $x^2 + y^2 + 2ax + c = 0$ and $x^2 + y^2 + 2by + c = 0$ touch each other if $\frac{1}{a^2} + \frac{1}{b^2} = \frac{1}{c}$.
- 13. If P(x, y) is any point on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ with foci S and S' then prove that SP + S'P is a constant.
- 14. Find the equations of the tangents to the ellipse $2x^2 + y^2 = 8$ which are parallel to x 2y 4 = 0.and perpendicular to x + y + 2 = 0.
- 15. Find the eccentricity, foci, equations of directrices, length of latus rectum of the hyperbola $16y^2 9x^2 = 144$.
- 16. Find the area of the region enclosed between the curves $y = 2 x^2$, $y = x^2$.
- 17. Solve: $\frac{dy}{dx} = \frac{x(2\log x + 1)}{\sin y + y \cos y}$.

(10 x 2 = 20)

Max.Marks:75

- III. i) Long Answer Type Questions.
 - ii) Answer any FIVE questions.
 - iii) Each question carriers **SEVEN** marks.
- 18. Find the equation of a circle which passes through the points (2, -3), (-4,5) and whose centre lies on 4x + 3y + 1 = 0.
- 19. Prove that the combined equation of pair of tangents drawn from an external point $P(x_1, y_1)$ to the circle S = 0 is $S_1^2 = SS_{11}^2$
- 20. Find the equation of the parabola whose focus is (-2, 3) and directrix is the line 2x + 3y 4 = 0. Also find the length of the latusrectum and the equation of the axis of the parabola.

21. Evaluate
$$\int \sqrt{\frac{5-x}{x-2}}$$
.

22. If $I_n = \int \sec^n x \, dx$, then prove that $I_n = \frac{1}{n-1} \sec^{n-2} x$. $\tan x + \frac{n-2}{n-1} I_{n-2}$, and deduce value of $\int \sec^5 dx$.

23. Show that
$$\int_{0}^{\pi/2} \frac{x}{\sin x + \cos x} \, dx = \frac{\pi}{2\sqrt{2}} \log(\sqrt{2} + 1).$$

24. Solve the differential equation
$$\frac{dy}{dx}(x^2 y^3 + xy) = 1$$
.

* * * * * * * * *